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Summary 
It is demonstrated that, for the ~ relaxation in polystyre- 

ne,an adequate description of thermolumineseence curves for 
several temperature-time programs is possible using only proper- 
ties of the polymer relaxation process. A distribution function 
depending only on one variable, the material time, is introduced. 
Possible modifications at the glass transition are suggested. 
The new method is compared with the traditional analysis. 

Introduction 
The original analysis of the thermoluminescence (TL) 

process is due to R~n~DALL and WILKINS (1945). These authors 
used the equation 

I ~ - dn/dt = n S exp (-~/kT) 

where I is the total luminescence intensity, dn/dt is the time 
rate of change of the concentration of trapped electrons, S is 
the attempt-to-escape frequency factor for an electron in a 
trap with activation energy E, k is Boltzmann's constant, and T 
is the temperature. This equation has been generalized many 
times, see e.g. C~E~N (1976) for a review. The introduction of 
trap distributions with respect to E, or E and S, was an impor- 
tant step in this field. 

If the movement of electrons from the traps to the TL 
centres in amorphous polymers is mediated by such molecular 
mobilities which are responsible for a secondary relaxation or 
a glass transition, then, of course, the properties of the TL 
curves are related to the properties of these relaxations. 
(PARTRIDGE 1965). Very broad distributions of relaxation times 
(from three to six logarithmic decades, say) are typical for 
both secondary relaxations and glass transitions. Now, a dis- 
tribution of relaxation times is certainly not quite the same 
as a distribution of trap parameters. If the influence of the 
relaxation is great enough, then its very broad distribution 
can cover all details of any elementary process such as first 
or second-order kinetics, parameters of the detrapping process, 
and the kinetics of a single transport step (hopping). The dif- 
ference between no, single, or repeated retrapping, and between 
short or long diffusion paths, can also be hid. 
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In this work, therefore, an extremely alternative approach 
is suggested. It is assumed that only the properties of the re- 
laxations (and not of the traps) are needed for a description 
of TL curves in amorphous polymers. The principle of time tem- 
perature equivalence (a fundamental feature of relaxations in 
polymers and other glasses) implies that the wanted distribution 
function depends, approximately, only on one variable, the 
material time (HOPKINS 1958, MORLAND and LEE 1960). Formulas are 
obtained which describe TL curves for an arbitrary temperature- 
time program after and before excitation. Some experimental re- 
sults of PENDER and FLEMING (1977) for the~ relaxation in poly- 
styrene (PS) can be reproduced. It is demonstrated for this re- 
laxation that an isothermal decay curve and a TL curve for a 
quenching cycle can be predicted adequately from only one glow 
curve at a constant heating rate. 

Secondary relaxations 
The material (also reduced or effective) time ~ is defined as 

t t 
~= ~(t;T(t'))=f dt'/aT(t, ) ~ eonst I dt'/T(T(t')) (i) 

where a T is the shift factor of the relaxation, T(t') is the 
temperature--time program on the past, t'< t, and t is the ac- 
tual time. Roughly spoken, ~ measures the time in units of a 
mean relaxation time T (T). A distribution (or spectrum) @ , 06 

~ i, is defined as that part of TL active electrons which 
caused a TL signal in the past. Clearly, the relation to the TL 
intensity is given by 

I = c o n s t  d # / d t  . ( 2 )  

Provided that those characteristics of TL which are not directly 
determined by the polymer mobility (such as the quantum yield) 
have only a negligible dependence on temperature and/or time, 

then ~ = r I should underline again that , is considered as 

a representative for the molecular mobility in a relaxation zone 
of a polymer and not as a distribution of trap parameters. 

The temperature dependence of a characteristic frequency W of 
a secondary relaxation can usually be described by an Arrhenius 
equation, 

in ~ = in ~A - A/T , (3) 

where ~ ~1013Hz, A/T = in (~./9), and (T ,~ ) is a fixed re- 
A o 0 

ference point ~ = V In an Arr~enlus plot. ~heeshift factor is 
o 

defined as a T = ~o/9 . 
Two interpretations of the distribution ~(~) are possible: 

(i) For a given scale of time, 1/Veff, (e.g. for a given heating 
rate ~ at constant pressure), ~ depends only on the temperature 
This means ~ is only a function of T, too. Consider~the secon- 
dary relaxation zone as an ensemble of local molecular motions 
having a distribution of energy barriers, EA, then T can be 
transformed into E A by 

E A = kT In (~A/geff). (4) 

Therefore we obtain ~ as a function of E A. Remember that E A (ac- 
tivation energy of a secondary relaxation) is, in principle, 
Considering 
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different from E (activation energy of the primary traps, for 
instances). 
(ii) In the case T=const, ~ is controlled only by the relaxation 
time r and we obtain~as a function of r. Practically, plotting 

as a function of in~ , r is to be the same function of in 
when one point on the in ~ -axis is gauged anew by lnT with the 
aid of eq.(1). 

Thus ~ can be conceived either as distribution of activation 
energies, EA, or of relaxation times, [ ; both EA and ~ charac- 
terizing the relaxation zone of the polymer. 

Analysis of TL curves for PS 
PENDER and FLEMING (1977) measured TL glow curves, quenching 

cycles, and isothermal decay curves for the~ relaxation in PS. 
Using only their glow curve for the 310 nm band, I calculated 
dr [ as a function of in ~ , d#/dE A as a function of EA, the 
isothermal decay I(t) for T = 122.8 K, and the first quenching 
cycle for this band. 

The material time is obtained from eqs.(1) and (3) as 

=~ dt' exp [ T ( t ' )  - T ~  ~ , (5) 

where (T ~ , t ~ is the start point of the experiment after irra- 
diation (at about 80 K). The slope A = 1990 K was obtained using 
a reference point @o,To) = (1Hz, 153 K) from mechanical meas- 
urements. 

Transforming eq.(2) into I(T) = const(d$/d in~)(d in~/dt), 
the distribution d~/dln ~ can be calculated from the glow curve 
I(T) at a constant heating rate (dln[/dt is obtained frome~(5). 

The activation energy distribution d@/dE A is obtained directly 
from the glow curve when the T-axis is gauged in E A with the aid 
of eq.(4). The effective frequency can be estimated from the 
heating rate T as ~eff= T/AT. I used ~ T : 5K, T : 0.067 K/s was 
given by the experimentators, which yields ~eff~13 m Hz. 

Both distributions are shown in Fig.l 
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Fig.1 Nonnormalized TL relaxation spectra for the ~ relaxation 
in PS (310 nm band) as a function of material time ~ (on 
the left) and of activation energy E A 
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Since the relation between ln [ and T is not linear, d~/dln~ has 
~her shape as the glow curve, d~/dln ~ can also be considered as 
a distribution of relaxation times as explained above~ The other 
distribution, d#/dEA, is compared to the activation energy distri- 
bution of occupied electron traps at 80 K as calculated by PENDER 
and FLEMING (1977), their no(E ) is labelled as P & F(E) in Fig.l. 
I think the peak at 0.08 eV is an overstimate resulting from their 
adjustment with two functions, no(Z ) and S(T), in the frame of 
trap parameters. If all details of trap kinetics are assumed to 
be covered by the very broad relaxation spectrumS, such functions 
would be unappropriated for an adjustment, and it would be not 
probable that one can obtain trap distributions from TL curves in 

polymers. 
Integrating d~/dln[ gives ~(~). The intensity I(t) for any 

temperature-time program T(t ~) can now be calculated from eqs.(2) 
and !5)- The result for the isothermal decay at T=122.8 K is com- 
pared with the experimental findings (P&F) in Fig.2. 

P~'Pc~c, ~ 

I I ! 

0 200 400 t (s) 

~ .  PIt, F 

100 2oo T(K) 

Fig.2 TL intensity I for the isothermal decay at T=122.8 K (on 
the left) and the first quenching cycle for the ~ relaxation 
in PS (on the right, the original glow curve is also shown 

here) 

Two curves are calculated for the first quenching cycle (quench 
at the ~aximum temperature of the original glow curve and heating 
again with the same T): curve 1 (see Fig.2, on the right) is for 
quenching immediately after T=122.8 K is reached, and curve 2 is 
for quenching after a delay of 30 s (which interval was quoted by 
the experimentators) between reaching 122.8 K and quenching. 
During this delay, T=const was assumed.The calculated intensity 
is rather sensitive to such small changes of the temperature-time 
program as can be seen from the diagram. 

Fig.2 shows that a fair agreement between experimental (P&F) 
and calculated (calc.,l,2) curves can be achieved. No adjustment 
is necessary if the proportionality constants are handled with 
care. Knowledge of trap parameters is not necessary. Therefore, 
a description of TL curves for ~(PS) seems to be possible using 
only properties of the polymer relaxation. 

Interpretation 0f the frequency factor 
This section is to show that there is an "intrinsic" frequency 
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factor, s, in our approach, intrinsic with regard to the relax- 
ations, Fig.3 shows how such a factor can be introduced for a 
glow experiment with a constant heating rate T. 

I/T 

I[n-Q A 

c g•••__j.elaxation 
zone  

nU 

s|ope A 
e x p e r i m e n t  , I 

Fig.30rign of an intrinsic frequency factor s=~/yef f resulting 
from a broad distribution of relaxation times 

The attemps are counted by a mean frequency ~ of the wprking part 
(non hatched) of the distribution. "Thawing" of the frozen parts 
(hatched) allows escaping of electrons which is therefore charac- 
terized by the experimental time scale I/~ef f. 0bviously, an at- 
tempt-to-escape factor with respect to the relaxations can be 

defined as s=~/~ef f. 
Since ~increases when the temperature is increased, s increas- 

es too. But the slope of s,ldlns/d(i/T)~, is smaller than the 
mean slope A of the secondary relaxation as can be seen from 
Fig.0. These properties of s correspond to the findings of PEN- 
DER and FLEMING (1977) with regard to their frequency factor of 
traps, S(T). Probably, there is some projection of the relaxation 
properties into the frame of trap distributions presumed by these 
authors. 

By the way, a broadening of our distribution function ~ (due 
to the elevation of pressure, for instances) leads to an increase 
of our frequency factor s at a given temperature, and to a de- 
crease of its mean slope, if the mean position of the secondary 
relaxation in an Arrhenius plot is not altered (by the pressure 
in the example). 

Modifications at the ~lass transition temperature Tg 
The material time ~ near Tg is influenced not only by the ac- 

tual temperature T (as in the case of secondary relaxations) but 
also by the fictive temperature Tf according to TOOL (19~6)). 
That is why some modifications of our method are necessary. I 
suggest, according to a general idea of NARAYANASWAMY (1971) 
(see DE BOLT et al. (1976), too), that their method stemming 
from linear response can also be applied for the calculation of 
Tf with respect to TL. Starting from the general formula of 
linear response t 

~B(t) = f f(t')J(t-t')dt' , (6) 
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where XB is an observable, f is the conjugated force, ~=df/dt, 
and J is the relevant compliance, we have to substitute 

X B ~ T f ,  f - -~T,  J---~$',  t -  t ' ~  -~  ' (7) 
The relevant pair off conjugated variables is now T and Tf, and 

is a compliance, with respect to TL. According to the fluctu- 
ation dissipation theorem, this compliance is related to a cor- 
relation function which is tightly connected with our spectrum 
$(~). These relationships are discussed with regard to glass 
transitions by DONTH (1981). Having a logarithmic broad distri- 
bution ~ (some logarithmic decades of ~) we can assume ~ ~ . 
Then we obtain, from eqs. (6) and (7), 

t 

T f ( t ) ~  f T ( t ' ) r  - [ ' ) d t '  . (8) 
to 

The integration has to start at a time t ~ when the sample is in 
equilibrium,T(t ~ ~T~. In this way the cooling history before 
excitation influence~ Tf, and therefore I(t)~ 

NARAYANASWAMY (1971) suggested also the following mixing rule 
for T and Tf with respect to their influence on ~, 

t 

- dr,' expI [x(T(t")-Tg)+(1-x)(Tf(t")-TglJ } ,  (9) 
t, 

where x (mostly between 0.4 and 0.6) is a mixing parameter and 
B is the slope of the WLF (Williams-Landel-Ferry) equation near 
Tg, B=(dlnv/dt)~, usually in order of 1/K. 

Eqs.(8) and ~9) represent a nonlinear system for Tf(t) and 
~(t). ~(~-~') and x can be obtained from experimental data of TL 
intensity I(t) using eqs.(2),(8), and (9) in a regression program. 
Having ~ and x, this intensity can be calculated for any tempe- 
rature-time program from these equations. A correlation for ~ is 
recommended for the wanted computer programs. 

The following qualitative prediction can be made from these 
equations: Consider a set of TL glow curves.having the same 
heating rate T but different cooling rates T c before the irradi- 
ation, (T,Tc = const near Tg.) Then the peak of the glow curve 
near Tg is sharpened and shifted to higher temperatures, and its 
low temperature tail is shortened, when the cooling rate is de- 
creased. Such an effect is usually called an overheating. A ty- 
pical order-of-magnitude estimate is: Increase of peak height 
i0~ and shift of the peak maximum temperature +l K when Tc/T is 
varied from l0 to 0.1. 

Conclusions 
As demonstrated for the ~ relaxation in PS, a description of 

TL curves is possible using only properties of the relaxation 
process. Under certain conditions, theTL curves of polymers give 
mainly information about polymer mobility as relevant to the 
movement of TL active electrons. 

Further work is needed to clarify the precise meaning of the 
mobility and to fix the conditions of this statement. As I can 
see, such conditions are E ~ EA, great influence of polymer mo- 
bility on detrapping, retrapping, and transport of electrons, 
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and a logarithmic broad distribution ~. Then trap parameters and 
kinetic details of single t~,ansport steps can probably not be 
derived from I(t) curves, because they are totally covered by 
the very broad distributions of relaxation times which are typi- 
cal for amorphous bodies. On the contrary, if the relaxation 
spectra are narrow as in the case of some organic crystals, for 
instance, then there is some hope to get information about the 
traps from I(t). 

Since the distribution @ is calculated by means of a method 
stemming from linear response, @ can really be compared with 
spectra analogously obtainable from other measurements (such as 
calorimetric, mechanical, dielectrical, after reduction to a 
common frequency or temperature). Such a comparison should give 
some insight into the transport process responsible for TL. 

I suggest that similar methods can be used for the analysis 
of other thermostimulated experiments in polymers such as TSC 
(thermostimulated current), TSP (polarization), and so on. It is 
likely to expect that the r from different methods are similar 
but not identical, because the underlying molecular mechanisms 
are not exactly the same for the different phenomena. 
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